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We develop methods for analysing the `interaction' or dependence be-
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possible using an analogue of the K -function. Alternatively one may
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1 Introduction

In the analysis of spatial point patterns, one of the main objectives is often to assess

the strength of `interaction' or dependence between the points. Methods for

investigating interpoint interaction include non-parametric summaries such as the

second moment function K (Ripley, 1977, Diggle, 1983) and explicit parametric

models such as Markov point processes (Ripley and Kelly, 1977, Baddeley and

MÖller, 1989). However, the existing non-parametric summaries rely on the

assumption that the point pattern is spatially homogeneous (stationary and/or

isotropic). If an initial analysis suggests that the pattern has non-constant intensity,
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then current non-parametric techniques do not allow further analysis. The Markov

point process literature also focuses mainly on stationary processes, with the

exception of the work of Ogata and Tanemura (1986). Considerable attention is

now being given to inhomogeneous Markov and Gibbs processes (Baddeley and

Turner, 2000, Nielsen and Jensen, 1999, Stoyan and Stoyan, 1998). As such

models are analytically intractable, Markov chain Monte Carlo (MCMC) methods

are indispensable for likelihood-based statistical inference (Geyer and MÖller,

1994, Geyer, 1999, MÖller, 1999).

Inhomogeneous point patterns may arise, for example, from observations of the

positions of plants where the soil fertility exhibits spatial variation. If we assume that

fertility is a random spatially varying ®eld, but that conditional on the soil fertility

(and possibly other environmental factors) the plant locations are independent, the

appropriate model is a Cox process (Diggle, 1983, Stoyan et al. 1995, MÖller
et al., 1998, Brix and MÖller, 1998). On the other hand, if there is dependence

between plants (such as competition), it seems natural to modify the Cox model by

adding interaction terms (MÖller et al., 1998); however, MCMC methods for such

extended Cox process models are computationally very demanding.

In this paper we take a simpler approach, extending the second-order analysis of

stationary processes (based on the K-function) to non-stationary processes. Firstly in

section 2 we develop a non-stationary analogue Kinhom of the K-function. We propose

a non-parametric estimator of Kinhom and demonstrate its usefulness on two standard

point pattern datasets. It is also shown that Kinhom has both properties and weaknesses

similar to those of K.

A key observation is that for stationary processes the K-function is invariant under

independent thinning (independent random deletion/retention of each point of the

process with a ®xed retention probability p). A similar property holds for our Kinhom

without the requirement of constant p. This suggests an approach which we explore

in section 3. We construct a new model for inhomogeneous point patterns by taking a

stationary Markov process and applying independent random thinning by an inhomo-

geneous thinning surface. We study semi-parametric inference for this model. Finally,

in section 4 we discuss some open problems.

2 Non-parametric second-order analysis of inhomogeneous point patterns

Throughout this paper we restrict attention to planar point patterns (i.e. locally

®nite subsets of R2) observed through some bounded observation window W � R2

with area jW j. 0. Standard practice in the analysis of point patterns is ®rst to form

a non-parametric estimate of the ®rst-order intensity ë(s), s 2 R2; then if this is

deemed to be uniform, ë(s) � ë, to investigate interpoint interactions by estimating

various summary statistics such as the K-function or the empty space distribution

function. These statistics are compared with their expected values for the

homogeneous Poisson point process which serves as the null hypothesis of
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complete spatial randomness (i.e. absence of interaction), see e.g. Ripley (1977)

and Diggle (1983).

Here we generalise this approach to inhomogeneous point patterns, using an

extension of the K-function, de®ned in section 2.1.

We shall sometimes use Palm distributions (see Stoyan et al., 1995, p. 119±121).

Brie¯y, for a ®nite point con®guration y � fy1, . . . , yng � R2 and a planar point

process Y , the Palm distribution Py of Y at y can be interpreted as the conditional

distribution of Y given that y � Y . We let E y denote expectation with respect to Py,

and set Ps � Pfsg and Es � Efsg for s 2 R2.

2.1 K-function for inhomogeneous point patterns

In order to de®ne the inhomogeneous K-function we need a few preliminaries.

Assume that Y has a ®rst-order intensity function ë(s), s 2 R2, i.e.

Ecard(Y \ B) �
�

B

ë(s) ds for B 2 B 0

where B 0 is the class of bounded Borel sets in R2. For any A, B 2 B 0 de®ne

M(A, B) � E
X

yi2Y\A

X
y j2Y\B

1

ë(yi)ë(yj)

and assume this is ®nite for all A, B 2 B 0. Then M is the second moment measure

of the random measure Î which puts mass 1=ë(yi) on each point yi 2 Y , i.e.

Î �
X
yi2Y

1

ë(yi)
ä yi
:

Note that Î is well de®ned since ë(yi) . 0 almost surely for all yi 2 Y .

Definition 1. The point process Y is `̀ second-order intensity-reweighted sta-

tionary'' if the random measure Î is second-order stationary. Equivalently

M(A, B) � M(A� x, B� x) for all x 2 R2 where A� x denotes the translation

of A by the vector x.

A second-order stationary point process is also second-order intensity-reweighted

stationary. A second-order intensity-reweighted stationary process must either have

zero intensity almost everywhere or positive intensity almost everywhere. Examples

of second-order intensity-reweighted stationary point processes include all inhomo-

geneous Poisson processes with an intensity function, and the independent thinning

by a measurable thinning ®eld of any stationary point process with ®nite intensity

(see section 3).

Definition 2. Let Y be a second-order intensity-reweighted stationary point

process. De®ne the inhomogeneous K-function of Y by
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Kinhom(t) � 1

jBjE
X

yi2Y\B

X
y j2Ynf yig

1(kyi ÿ yjk < t)

ë(yi)ë(yj)
, t > 0 (1)

for any B 2 B 0 with jBj. 0, where 1(:) denotes the indicator function, jBj is the

area (Lebesgue measure) of B, and we take a=0 � 0 for a > 0. This expression

does not depend on the choice of B.

The inhomogeneous K-function is a generalisation of the usual K-function, since a

stationary (or at least ®rst-order stationary) point process has ë(s) � ë and the right-

hand side of (1) reduces to the de®nition of K(t) in Ripley (1977). Analogously to

the stationary case, we set Linhom � (Kinhom=ð)1=2 (Besag, 1977; see also sections

2.2±2.3). For inhomogeneous Poisson processes with an intensity function,

Linhom(t) � t.

Additionally Kinhom(t) has an interpretation as a Palm expectation, similar to that

for the stationary case:

Kinhom(t) � Es

X
yi2Ynfsg

1(kyi ÿ sk < t)

ë(yi)
(2)

for almost all s 2 R2. This follows from the Campbell±Mecke formula.

To illuminate the conditions under which an inhomogeneous K-function exists,

assume that the product densities r(1) and r(2) of Y exist (see Stoyan et al., 1995, p.

111). The ®rst-order density r(1)(s) is just the intensity function ë(s). The value

r(2)(u, v) du dv is the probability that Y has a point in each of two in®nitesimally

small discs with centers u, v and volumes du, dv. Then, by standard results,

M(A, B) �
�

A

�
B

r(2)(u, v)
1

ë(u)ë(v)
du dv �

�
A

�
B

g(u, v) du dv

where

g(s1, s2) � r
(2)(s1, s2)

ë(s1)ë(s2)
, s1, s2 2 R2 (3)

is the pair correlation function of Y.

If we assume that g is translation invariant, i.e. g(s, s� h) � g0(h) for some

function g0 : R2 ! [0, 1), then Y is second-order intensity-reweighted stationary,

and the inhomogeneous K-function is given by

Kinhom(t) �
�

B(0, t)

g0(h) dh (4)

where for s 2 R2 and r > 0, B(s, r) denotes the disc with center s and radius r.

Thus, a third example of a second-order intensity-reweighted stationary point

process is given by inhomogeneous log Gaussian Cox processes (see Brix and

MÖller, 1998, MÖller et al., 1998) with pair correlation function of the form
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g(s1, s2) � exp(c(s1 ÿ s2)) where c(:) is the translation invariant covariance function

of a Gaussian ®eld.

2.2 Estimation of Kinhom

For simplicity, we consider below the estimation of Kinhom when g0 exists and is

isotropic, i.e. when g0(h) depends only on khk. However, using edge corrections as

discussed in Stoyan and Stoyan (1994) and Stoyan et al. (1995) p. 134±137 or

Baddeley (1999), the proposed estimators of Kinhom can easily be modi®ed to the

general case.

It is easily veri®ed that a pointwise unbiased estimator of Kinhom is given by

K̂inhom(t) � 1

jW j
X

yi2Y\W

X
y j2Y\Wnf yig

w yi, y j
1(kyi ÿ yjk < t)

ë(yi)ë(yj)
, 0 < t , t�

(5)

where w yi, y j
is Ripley's (1977) edge correction factor (see also Stoyan et al.,

1995, Baddeley, 1999) and

t� � supfr > 0 : jfs 2 W : @B(s, r) \ W 6� Ægj. 0g
where @B(s, r) denotes the boundary of B(s, r).

An alternative, which we have not investigated further, is to estimate the pair

correlation function g by

ĝ0(a) � 1

2ðajW j
X

yi2Y\W

X
yi2Y\Wnf yig

w yi, y j

k(aÿ kyi ÿ yjk)
ë(yi)ë(yj)

, a . 0, (6)

for some smoothing kernel k. This estimate is similar to the usual non-parametric

estimate for g0 in the stationary case, see e.g. Stoyan and Stoyan (1994); it can

easily be extended to an estimate for the cross pair correlation function of a

bivariate point pattern, see Brix and MÖller (1998).

In practice ë(:) is not known, so ë(:) in (5)±(6) must be replaced by an estimate.

For this one may use the non-parametric kernel estimate given by

ë̂b(s) �
X

yi2Y\W

kb(sÿ yi)=cW,b(yi), s 2 W (7)

where kb is yet another kernel with bandwidth b and

cW,b(yi) �
�

W

kb(sÿ yi) ds

is an edge correction factor so that
�

W
ë̂b(s) ds is an unbiased estimator of

Ecard(Y \ W ) (Diggle, 1985; the bandwidths used in (6) and (7) may be quite

different). However, the estimate of Kinhom obtained in this way turns out to be

severely biased downwards; see section 2.3. This appears to be due to positive bias

in the kernel estimate ë̂b when it is evaluated at data points yi 2 Y .
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In order to study the bias of ë̂b in more detail we assume that kb(s1 ÿ s2) � 0

whenever s2 =2 B(s1, b) and that there exists an s in W with B(s, 2b) � W so that

cW,b(v) � cW,b(s) for all v 2 B(s, b). If we also assume that the pair correlation

function g exists, then the bias of ë̂b evaluated at a point yi 2 Y located at s is

Esë̂b(s)ÿ ë(s) � kb(0)

cW,b(s)
�
�

W

kb(sÿ v)

cW,b(s)
(g(s, v)ë(v)ÿ ë(s)) dv (8)

For an inhomogeneous Poisson process (where g � 1) with a continuous intensity

surface, the second term on the right hand side of (8) vanishes as b tends to zero,

while the ®rst term is always positive and typically increases as b tends to zero. For

an inhomogeneous Poisson process it thus makes sense to replace ë̂b by a modi®ed

estimate

ëb(s) �
X

yi2Y\Wnfsg
kb(sÿ yi)=cW,b(yi), s 2 W (9)

whose bias consists only of the second term on the right hand side of (8). For a

clustered point process with g > 1 we have that jEsëb(s)ÿ ë(s)j < jEsë̂b(s)ÿ ë(s)j
for b suf®ciently small, so also in this case ë seems to provide a better estimate

than ë̂. For repulsive point processes with g < 1 the picture is less clear since the

integral term in (8) now produces a negative bias when b tends to zero. Indeed,

both estimators ë̂ and ë may be essentially useless e.g. for a hard core process with

g(s, v) � 0 for all v 2 B(s, b).

For the experiments in the next section we use the modi®ed estimate (9). The

experimental results show that for inhomogeneous Poisson processes, the estimator

of Linhom given by L̂inhom � (K̂inhom=ð)1=2 is severely biased downwards when ë̂ is

used, while better results are obtained if ë is used instead. Note that ë̂b(u) � ëb(u)

for u 2 WnY , so if ë̂b and ëb are approximated by their values evaluated at a ®xed

grid of points, the two estimators of the intensity surface agree with probability 1.

In practice it is often dif®cult to make an objective distinction between large-scale

variation given by ë(:) and variation due to interactions. This is especially the case if

Y has attractive interactions, since clustering due to attractive interactions may be

hard to distinguish from clustering due to peaks in the intensity surface. Some prior

knowledge or assumptions concerning the smoothness of ë(:) are therefore required:

the user needs to ®rst settle on a suitable bandwidth b, so that the smoothness of ëb is

in accordance with prior beliefs, and subsequently Kinhom can be applied to study

possible deviations from the Poisson hypothesis. If kb is not strictly positive and the

chosen bandwidth b is small compared with the observed interpoint distances, it may

happen that ëb(yi) takes the value zero for an observed point yi. In such a case

one may choose to estimate Kinhom(t) only for t < supfR . 0jB(0, R) �
fs 2 R2jkb(s) . 0gg; or simply to use a strictly positive kernel instead.

Sometimes it may be relevant to use a parametric model for the intensity surface.

Under the assumption of a Poisson process, such a parametric model can easily be

334 A. Baddeley, J. Mùller and R. Waagepetersen

# VVS, 2000



®tted using standard software for generalized linear models, see Burman and

Turner (1992) and Baddeley and Turner (2000).

2.3 Examples

Our two examples of point patterns are, ®rstly, the locations of adult longleaf pine

trees in a 200m 3 200m region, see Platt et al. (1988), and secondly, a pattern of

Japanese black pine seedlings and saplings (Numata, 1964) in which we restrict

attention to the 88 `large' trees (de®ned as over 20 cm in height). For convenience,

both datasets have been rescaled to the unit square. The intensity surfaces are

estimated using the product kernel kb(u) � eb(u1)eb(u2), u � (u1, u2) 2 [0, 1]2,

where eb(a) � (0:75=b)(1ÿ (a=b)2)1(jaj, b) is the Epanechnikov kernel. The

bandwidth was taken to be b � 0:24 in the ®rst example, and b � 0:28 in the

second.

Figure 1 shows the longleaf pines data together with the kernel estimate ëb of the

intensity surface and the estimate of Linhom obtained using ëb. The envelopes in the

right hand plot of Figure 1 are obtained as in Diggle (1983) from simulated

realisations of the inhomogeneous Poisson process with intensity surface equal to the

estimated surface shown in the middle plot of Figure 1. We used 39 simulations so

that L̂inhom(t) is expected to be within the envelopes with 95% probability for each

t . 0 under the hypothesis that the observed data are generated by an inhomogeneous

Poisson process. The analysis suggests there is attraction between points. We have

also estimated Linhom using a parametric model log (ë((s1, s2); ø)) � ø1 � ø2s2
1 �

ø3s3
1 for the intensity surface and got similar results (®gure omitted).

Figure 2 shows the analogous plots for the large Japanese black pines. There is a

slight hint of repulsion. The Japanese black pines data have previously been modelled

by both homogeneous and inhomogeneous Gibbs or Markov point processes, see

Ogata and Tanemura (1985), Ogata and Tanemura (1986), and Goulard et al.

(1996). Knowledge about the environment in which the plants grow seems to be

Fig. 1. Longleaf pines data. Left: the locations of the 271 trees. Middle: non-parametric kernel estimate

of the intensity surface. Right: estimate of Linhom from the data (dotted) and envelopes of

simulated estimates (solid) computed from 39 simulated realisations of an inhomogeneous

Poisson process with intensity equal to the ®tted intensity shown in the middle plot.
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crucial in practice to make an informed choice between the homogeneous and the

inhomogeneous setup.

For the inhomogeneous Poisson process with intensity surface as in Figure 1,

Figure 3 shows the bias of the estimator of Linhom obtained with the usual kernel

estimator ë̂b (upper plots) and with the modi®ed kernel estimator ëb (lower plots) for

values of b � 0:18, 0:24 and 0:30. The estimate of Linhom is substantially biased

downwards for all three values of b when ë̂b is used while the bias is of a small

magnitude when ë0:24 or ë0:30 is used.

2.4 Counterexamples

To emphasise the fact that the K-function does not uniquely characterise a point

process, BADDELEY and SILVERMAN (1984) gave an example of a non-Poisson

stationary process whose K-function is identical to that of the homogeneous

Poisson process. Here we modify that counterexample to apply to the

inhomogeneous K-function. Speci®cally, we will show that for any given intensity

function ë(s), there exists a point process X which is not a Poisson process and

whose inhomogeneous K-function is identical to that of the inhomogeneous Poisson

process with intensity function ë(s).

First note that it is easy to construct non-negative integer random variables N such

that EN � Var N � ì, for any given ì. 0, which nevertheless have a distribution

which is markedly different from the Poisson distribution. One such construction is

as follows. For any 0 , a < 1 the variable Na which takes values 0, 1 and 10 with

probabilities 1ÿ a� a2=10, aÿ a2=9 and a2=90 respectively, has mean and variance

equal to a. Hence for any ì. 0, if we let m � [ì] be the largest integer smaller than

ì and a � ìÿ [ì] the fractional part of ì, the random variable

N � Na � N
(1)
1 � N

(2)
1 � � � � �N

(m)
1

Fig. 2. Japanese black pines data. Left: the locations of the 88 large trees. Middle: non-parametric

kernel estimate of the intensity surface. Right: estimate of Linhom from the data (dotted) and

envelopes of simulated estimates (solid) computed from 39 simulated realisations of an

inhomogeneous Poisson process with intensity equal to the ®tted intensity shown in the middle

plot.
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has mean and variance equal to ì, where the summands are independent and

N
(1)
1 , N

(2)
1 , . . . , N

(m)
1 are distributed as N1.

Now let ë : R2 ! [0, 1) be any locally integrable function. Partition R2 into

disjoint cells Ci, i � 1, 2, . . . , of ®nite positive area. For each i, let

ìi �
�

Ci

ë(s) ds

and let Ni be independent random variables constructed as above (setting Ni � 0 if

ìi � 0) such that ENi � Var(Ni) � ìi. Given Ni � ni, let ni i.i.d. random points

be placed in Ci with probability density f i(s) � ìÿ1
i ë(s), s 2 Ci and zero otherwise.

The points in Ci are independent of points in other cells C j, j 6� i. All points taken

together form the counterexample process X.

Consider the second-order reduced moment measure á(2) for X

á(2)(B1, B2) � E
X
yi2X

X
y j2Xnf yig

1(yi 2 B1, yj 2 B2),

for B1, B2 2 B 0. Writing

Fig. 3. Each plot shows the mean of Linhom(t)ÿ t estimated from 200 simulations of the inhomoge-

neous Poisson process with intensity surface shown in Figure 1. Upper row: Estimates obtained

using ë̂b and values of b equal to 0:18, 0:24 and 0:30 (left to right). Lower row: As upper row

but using ëb.
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Bm �
[

k

(Bm \ Ck), m � 1, 2

it is easy to show by construction of X that

á(2)(B1, B2) �
X
k, l

ík,1í l,2 �
X

k

ík,1

X
l

í l,2

where ík,m �
�

Bm\C k
ë(s) ds. It follows that á(2) has density r(2)(u, v) � ë(u)ë(v)

with respect to the Lebesgue measure on R4. Hence by equations (3) and (4), X has

inhomogeneous K-function

Kinhom(t) �
�

B(0, t)

1 ds � ðt2

identical to that of the inhomogeneous Poisson process with intensity function ë.

3 Thinned Markov point process

3.1 Introduction

The class of Markov point processes (Ripley and Kelly, 1977, Baddeley and

MÖller, 1989) allows for parametric modelling of clustering or repulsion between

points. In the sequel we consider Markov point processes on R2 as speci®ed below.

We suppose that an `interaction function' ö is de®ned for all point con®gurations

x � R2 and that ö has ®nite interaction radius r . 0. Speci®cally, ö is a non-negative

measurable function with ö(x) � 1 whenever kxi ÿ xjk. r for some distinct points

xi, xj 2 x, and ö(x) . 0 implies that ö(z) . 0 for any z � x.

For disjoint point patterns y and x with card(y) ,1, de®ne

ë(yjx) �
Y

z� y[x : z\ y 6�Æ
ö(z) (10)

if ö(x) . 0, and ë(yjx) � 0 otherwise. This will be the Papangelou conditional

intensity of the point process at x. Note that ë(yjx) depends on x only through

fxi 2 xj9 yj 2 y : kxi ÿ yjk < rg provided ö(x) . 0. For B 2 B 0, let ìB denote the

distribution of the unit rate Poisson point process on B.

A Markov point process X with interaction function ö is speci®ed by a set of

conditional densities f f B(:j:)gB2B 0
, where

f B(x \ BjxnB) / ë(x \ BjxnB) (11)

considered as function of x \ B is assumed to be a well-de®ned density with

respect to ìB if ö(xnB) . 0. Additional conditions on ö are, of course, required in

order to ensure that X exists and further conditions may be added to ensure that its

distribution is uniquely de®ned (Preston, 1976, Georgii, 1988).

A standard example of an inhibitive Markov point process is the Strauss process.

For parameters è1 2 R and è2 2 [ÿ1, 0], the interaction function is given by
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ö(fxig) � exp(è1), ö(fxi, xjg) � exp(è2) if kxi ÿ xjk < r and ö(fxi, xjg) � 1 other-

wise, while ö(x) � 1 if card(x) . 2. The right hand side of (11) is integrable with

respect to ìB provided è2 < 0. As ö is translation invariant, it can be shown that for

all (è1, è2) 2 R 3 [ÿ1, 0], there exists at least one stationary Markov point process

with interaction function ö.

Models for inhomogeneous point patterns can be derived from Markov point

processes in various ways. Inhomogeneous Markov point processes may be obtained

by letting the ®rst-order terms ö(fxig) depend on xi. For second-order terms, ö is

usually chosen to be translation invariant, while ö � 1 for higher-order terms, see

Ogata and Tanemura (1986), and Stoyan and Stoyan (1998). Nielsen and

Jensen (2000) consider another interesting approach where smooth transformations

are applied to homogeneous Markov point processes in order to obtain models for

inhomogeneous point patterns.

In the following we propose a third approach where an independent thinning is

applied to a stationary Markov point process X to obtain a point process

Y � fxi 2 X : Ui < p(xi)g. Here p : R2 ! [0, 1] is a measurable function and the

Ui are i.i.d. random variables uniformly distributed on [0, 1] which are generated

independently of X . As in section 2, we suppose that Y is observed within a bounded

window W. For later purposes, note that the conditional probability of observing a

point pattern Y \ W � y given X � x is

p(yjx) � 1(y � x)
Y
xi2 y

p(xi)
Y

xi2(x\W )n y

(1ÿ p(xi)) (12)

Further, the intensity of Y is given by

ë(s) � rp(s), s 2 R2 (13)

and its second-order product density by

r(2)(s1, s2) � ë(s1)ë(s2)gX (s1 ÿ s2), s1, s2 2 R2

where r and g X (:) denote the intensity and pair correlation function of X . Hence,

the pair correlation function of Y equals g X , so the Kinhom-function of Y is equal to

the K-function for X.

The choice between the three approaches will depend on the scienti®c context. For

the thinned Markov point process, the thinning probability may be interpreted, for

example, as the probability of survival of a plant or the probability of observing an

animal in a wildlife population survey. It is natural to assume that such probabilities

are location-dependent. The thinned Markov point process setup has some advan-

tages over the others, since summary statistics may be de®ned and estimated as

discussed in section 2. One possibly less appealing property of the thinned Markov

point process model is that it is non-Markovian (see counterexample 2 in Baddeley
et al., 1995) except in the case where ö(x) � 1 for card(x) . 1, i.e. when Y is an

inhomogeneous Poisson process. However, as discussed in more detail in section 3.2,

for likelihood inference based on MCMC methods, we need only sample from the
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distribution of X and the conditional distribution of X given Y , and these distribu-

tions are both Markov. Moreover, the simple correspondence (13) between the

intensity surface of the thinned point process and the thinning surface enables us to

propose a semi-parametric approach for the statistical analysis of a thinned Markov

point process, see section 3.2. The semi-parametric approach is useful in many real

applications where it is not always easy to propose a parsimonious parametric model

for the large scale variation determined by the thinning surface p. The discussion at

the end of section 2.2 concerning confounding also applies in the context of semi-

parametric inference, especially if X has attractive interactions.

A general problem for all three approaches is related to modelling of positive

correlation between points by interactions of a Markov point process, since there

seems to be a lack of Markov models for clustering which are both ¯exible and

biologically interpretable, see MÖller (1999) ± the area-interaction process (Bad-
deley and Van Lieshout, 1995, SÌrkkÌ and Baddeley, 2001) or the interacting

neighbour point processes in Grabarnik and SÌrkkÌ (1999) are possible excep-

tions. Repulsion due to effects such as competition between plants can however most

naturally be modelled by a Markov point process. For the Strauss process, for

example, the interaction distance r may describe the size of the `̀ in¯uence'' zone of

a tree, and è2 determines the `̀ strength'' of the in¯uence. See also the discussion in

Stoyan and Stoyan (1998).

3.2 Semi-parametric inference for a thinned Markov point process

Let X be a stationary Markov process and Y the process obtained by independent

random thinning of X according to a thinning ®eld p : R2 ! [0, 1]. Suppose that

the distribution of X is speci®ed by a parametric model, depending on a parameter

è 2 È � Rd , d > 1, with (translation invariant) interaction function ö(:; è),

Papangelou conditional intensity ë(:j:; è), and nth order product density r(n)(:; è).

To begin with, we shall assume that the intensity surface ë(:) is known inside the

observation window W. For a given è 2 È satisfying r(è) > sups2R2ë(s) where

r(è) is the intensity of X under è, it follows from (12) that p(:) � p(:; è) is given

by

p(s; è) � ë(s)

r(è)
, s 2 W (14)

We also assume that the interaction radius r is known (estimation of r is discussed

in section 3.2.3). The likelihood of è is given by the following result:

Proposition 1. Let y be an observation of the thinned process Y \ W . The

likelihood of è given the data Y \ W � y, i.e. the density with respect to the unit

rate Poisson process on W, is

L(è) � Eè[ p(yjy [ X ; è)ë(yjX ; è)] � rcard( y))(y; è)E y,è[ p(yjX ; è)] (15)
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where Eè and E y,è denote expectation with respect to the distribution of X and the

Palm distribution of X at y, respectively.

Remarks: For the ®rst expectation in (15), ë(yjX ; è) is well-de®ned with

probability 1, since the stationarity of X implies that X \ y � Æ almost surely. The

likelihood (15) has the usual structure of a missing data likelihood: heuristically,

r(card( y))(y; è) � `̀ Pè(y � X )'' and E y,è p(yjX ) � `̀ Eè[ p(yjX )jy � X ]'' so that L(è)

� `̀ Eè[ p(yjX )]''.

Proof. We suppress dependence on the parameter è. Let ì denote the unit rate

Poisson process on W . Since the superposition Ö � Ö1 [Ö2 of two independent

unit rate Poisson processes Ö1 and Ö2 is a Poisson process with intensity 2, and the

conditional distribution of Ö1 given Ö is uniform on the set consisting of the 2Ö

subsets of Ö, we have that�X
y�x

h(xny, y)ì(dx) � exp(jW j)
��

h(z, y)ì(dz)ì(dy) (16)

for non-negative measurable functions h. Using (12) and (16) we ®nd that

P(Y \ W 2 F) � E

�
f W (xjXnW )

X
y�x : y2F

p(yjx)ì(dx)

" #

� exp(jW j)E
�

y2F

�
f W (y [ zjXnW ) p(yjy [ z)ì(dz) ì(dy)

" #
where F is any measurable event in the canonical probability space. Hence, the

density f W (y) of Y \ W with respect to ì is given by

f W (y)exp(ÿjWj) � E

�
p(yjy [ z) f W (y [ zjXnW ) ì(dz)

� �

� E

�
p(yjy [ z)ë(yjz [ (XnW )) f W (zjXnW ) ì(dz)

� �
� E[Efp(yjy [ (X \ W ))ë(yjX )jXnWg]
� E[ p(yjy [ (X \ W ))ë(yjX )]

where we have used (10)±(11) to obtain the second equality. Thereby the ®rst

equality in (15) is proved. The second equality in (15) is a straightforward

extension of the Nguyen and Zessin (1979) equality.

In section 3.2.1 the mean value with respect to the stationary process X in (15) will

be approximated by the mean value with respect to a ®nite point process ~X de®ned

on an extended rectangular window ~W � W such that ~X is `̀ circulant stationary'',
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i.e. stationary under toroidal translations of W . The density of ~X with respect to

ì ~W is

~f (x; è) � c(è)~ë(x; è) � c(è)
Y

Æ 6�z�x

~ö(z; è) (17)

for ®nite point con®gurations x � ~W , where c(è) is the normalizing constant and

the interaction function ~ö(:; è) is obtained from ö(:; è) in a straightforward manner

when ~W is wrapped on a torus. Note that ~ë(x; è) is the expression (10) for the

`̀ Papangelou conditional intensity of x given Æ'', with respect to ~ö(:; è). We

assume that the mean value in (15) is well approximated when ~W is chosen

suf®ciently large.

In practice ë(:) is unknown and we propose therefore a semi-parametric approach

where ë(:) in (14) is replaced by the non-parametric estimate ë̂b(:) evaluated at a ®ne

grid of points (see section 2.2). For a given è 2 È satisfying ~r(è) > sups2W ë̂b(s)

where ~r(è) is the intensity of ~X under è, the natural estimate of p(:) is

p̂(s; è) � ë̂b(s)=~r(è), s 2 W . Inserting this into (12) gives an estimate p̂(yjx; è) for

p(yjx).

The approximate semi-parametric likelihood is

~L(è) �
�

p̂(yjy [ z; è) ~f (y [ z; è)ì ~W (dz) �
�

p̂(yjx; è) ~f (x; è)ì ~W , y(dx)

(18)

where ì ~W , y is the Palm distribution of ì ~W at y, which by Slivnyak's theorem is

simply the distribution of Z [ y when Z � ì ~W .

3.2.1 Monte Carlo approximation of the semi-parametric likelihood

The approximate semi-parametric likelihood (18) is not known in closed form, but

may be estimated by using Markov chain Monte Carlo methods as described in

Gelfand and Carlin (1991) and Geyer (1994). To do so, choose a ®xed

parameter point ø 2 È, and write

~L(è)

~L(ø)
� c(è)

c(ø)

�
p̂(yjx; è)~ë(x; è)

p̂(yjx; ø)~ë(x; ø)
f̂ (xjy; ø)ì ~W , y(dx) (19)

where

f̂ (xjy; ø) � p̂(yjx; ø) ~f (x; ø)=~L(ø) / p̂(yjx; ø)~ë(x; ø) (20)

is the conditional density with respect to ì ~W , y of X given Y � y when p is

replaced by p̂(:; ø). A Monte Carlo approximation of the integral in (19) may thus

be obtained from simulations of f̂ (:jy; ø). The unknown ratio of normalizing

constants in (19) must typically also be replaced by a Monte Carlo approximation.

The likelihood (18) may be highly multimodal since a thinned point process with a

high underlying intensity and small retention probabilities may produce realizations

which are hard to distinguish from realizations of a thinned point process where the
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underlying intensity is small and the retention probabilities high. As noted in

section 3.2.2 below, if ~f is e.g. the density of a Strauss process, then the likelihood

(18) is in particular constant for parameter values è with è2 � 0 (i.e. the Poisson

case). To deal with the possible multimodality we choose a range of values

ái > sups2W ë̂b(s), i � 1, . . . , m, and maximize ~L(è) for each ®xed value of

~r(è) � ái, i � 1, . . . , m. The corresponding estimates are denoted è̂(ái), i � 1,

. . . , m. In certain applications one may take m � 1; it may, for instance, be known

that sups2W p(s) � 1 in which case one can take á1 � sups2W ë̂b(s) so that

sups2W p̂(s; è) � 1.

Note that for è and ø with ~r(è) � ~r(ø) � á, the expression (19) reduces to

Há(è, ø) � c(è)

c(ø)

� ~ë(x; è)

~ë(x; ø)
f̂á(xjy; ø) ì ~W , y(dx) (21)

where f̂á(xjy; ø) / p̂á(yjx)~ë(x; ø) with p̂á(yjx) given by (12) when p(:) is

replaced by p̂á(:) � ë̂b(:)=á.

The Monte Carlo approximation of (21) is

log Há(è, ø) � log
Xn

i�1

~ë(X�i ; è)

~ë(X�i ; ø)
ÿ log

Xn

i�1

~ë(X i; è)

~ë(X i; ø)
(22)

where (X�i )n
i�1 is a sample from f̂á(:jy; ø) and (X i)

n
i�1 is a sample from ~f (:; ø).

These samples can be generated by the Metropolis±Hastings algorithm studied in

Geyer and MÖller (1994), Geyer (1999), and MÖller (1999).

3.2.2 The exponential family case

In this section we restrict attention to the case where f ~fèjè 2 Èg is an exponential

family of densities so that

~fè(x) / exp (è1 n(x)� è2s(x)T)

where n(x) is the number of points in x and the statistic s(x) � (s1(x), . . . , sdÿ1(x))

determines the interaction structure of the point process given by ~fè (`T' denotes

matrix transpose). Hence for the MCMC approximation (22) we only need to store

the values of the suf®cient statistics (n(X i), s(X i)) and (n(X�i ), s(X�i )),

i � 1, . . . , n. For example, for the Strauss process,

s(x) �
X

fxi,x jg�x:xi 6�x j

1(kxi ÿ xjktorus < r)

where k:ktorus denotes distance on the torus. Note that ~fè is the density of a Poisson

process with intensity exp (è1) whenever è2 � 0. It follows easily from (18) that
~L(è) is constant for all è with è2 � 0. Since @~r(è)=@è1 � Varè n( ~X ), there is a

one-to-one correspondence between (è1, è2) and (~r(è), è2) when Varè n( ~X ) . 0.

Henceforth we assume that Varè n( ~X ) . 0.
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Assume further that ~r(è) � ~r(ø) � á is ®xed. Then è1 � è1(è2) becomes a func-

tion of è2 and by the implicit function theorem,

@è1

@è2

� ÿCovè(n( ~X ), s( ~X ))

Varèn( ~X )

Further,

@ log Há(è, ø)

@è2

� @ log Há(è, ø)

@è

@èT

@è2

� [Eè(n( ~X )jy)ÿ Eèn( ~X ) Eè(s( ~X )jy)ÿ Eès( ~X )]

3
ÿCovè(n( ~X ), s( ~X ))=Varè n( ~X )

I dÿ1

" #
(23)

where I k is the k 3 k identity matrix and the conditional expectations are with

respect to f̂á(:jy; è). Similarly, the Hessian @2 log Há(è, ø)=@è2@è
T
2 can also be

expressed in terms of moments of n( ~X ) and s( ~X ). We can then estimate è2 by

maximizing log Há(è, ø) using Newton±Raphson, see section 3.3. The moments

Eèn( ~X ) l s( ~X ) j which occur in the gradient and Hessian are replaced by Monte Carlo

estimates given by

Eèn( ~X ) l s( ~X ) j �
Xn

i�1

n(X i)
l s(X i)

j
~ë(X i; è)

~ë(X i; ø)

( )� Xn

i�1

~ë(X i; è)

~ë(X i; ø)

( )
(24)

The conditional moments Eè(n( ~X ) l s( ~X ) jjy) are estimated similarly but with X i

replaced by X�i . In order to estimate the moments for a given value è2 we

determine ®rst è1(è2) by solving ~r(è) � á numerically with respect to è1. Again we

use Newton±Raphson and a Monte Carlo estimate of ~r(è) � Eèn( ~X )=j ~W j.
The approximations (22) and (24) are only accurate for è in a neighbourhood

around ø. Suppose that there exists an E. 0 such that ø � (è1(ø2), ø2) works well

as an importance sampling parameter for estimation of moments with respect to both
~f (:; è) and f̂á(:jy; è) whenever kè2 ÿ ø2k, E and è � (è1(è2), è2). Assume also

that the Newton±Raphson procedure is initialized in è0
2 where ø � (è1(è0

2), è0
2) is

used as the importance sampling parameter. Let è1
2 denote the output of the Newton±

Raphson update. If kè1
2 ÿ ø2k, E, we reuse the two importance samples generated

for ø when calculating the next update è2
2. Otherwise new importance samples are

generated with ø replaced by (è1(è1
2), è1

2) as the new importance sampling para-

meter.

Suppose that è̂2 is the estimate obtained by the Newton±Raphson procedure for

given á. In order to calculate the log likelihood of è̂2 we generate importance

samples for a range of importance sampling parameters øi
2, i � 0, . . . , m, with

ø0
2 � 0 and køi�1

2 ÿ øi
2k, E, i � 0, . . . , m, where øm�1

2 � è̂2. Let øi �
(è1(øi

2), øi
2). The log likelihood of è̂(á) � (è1(è̂2), è̂2) is
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log Há(è̂(á), ø0) � log Há(è̂(á), øm)�
Xmÿ1

i�0

log Há(øi�1, øi) (25)

which can be calculated using the approximation (22). The approximation (25) may

not work well if è̂(á) and ø0 are far apart since Monte Carlo errors for each term

in the sum may accumulate. Alternatively one may use umbrella sampling or the

method of reverse logistic regression as discussed in Geyer (1998).

Recall that ~L(ø0) � ~L((log(á), 0)) is constant for all á, so log Há(è̂(á), ø0) can

be considered as a log likelihood ratio statistic for the Poisson hypothesis è1 2 R and

è2 � 0. If a bootstrap is used for hypothesis testing concerning the parameter è2, it is

computationally demanding to use the likelihood ratio statistic if the required number

m� 1 of importance samples is high. The Wald statistic given by

è2

@2 Há(è, ø)

@è2@è
T
2

èT
2

" #
è�è̂(á)

(26)

is a computationally less expensive alternative which can simply be evaluated in the

last step of the parameter estimation procedure.

3.2.3 Estimation of the interaction radius and model validation

The interaction distance r can of course also be included in the likelihood

estimation but the Newton±Raphson procedure described in section 3.2.2 is not

applicable for r, since r is not an exponential family parameter. Instead one may

maximize (21) for a range of values of r, whereby estimates è̂(á, r) are obtained

and then choose the value of r for which è̂(á, r) has the maximal likelihood. Since

Linhom for Y is equal to L for the Markov point process, a plot of the estimated

Linhom may indicate the range of r values which should be considered.

Finally, the estimated model may be checked by calculating envelopes for Linhom

(see section 2.3 and section 3.3) or by Monte Carlo tests for goodness of ®t (see e.g.

Diggle, 1983).

3.3 Example

In accordance with the discussion in the end of section 3.1 we shall refrain from

®tting a thinned Markov model to the longleaf pines data (Figure 1, section 2.3) for

which it is not obvious how to relate the apparent clustering to interactions of a

Markov point process. Instead we will ®t a thinned Strauss process to the large

Japanese black pines data (Figure 2).

We use the same bandwidth b � 0:28 as in section 2.3 and let the extended window
~W � [0, 1:2]2. The right plot in Figure 2 suggests that 0:02 < r < 0:05. Estimates

è̂(ái, r j) obtained for a range of values of á and the interaction distance r are shown

in Table 1. Here ái � supsë̂b(s)=ci where ci varies between 1:00 and 0:60. For each

value of á and r, the Newton±Raphson maximization procedure with E � 0:025 was

initialized in ø0(á) � ( log (á), 0) (the estimate under the Poisson assumption). The
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values of the maximized Monte Carlo approximation of the log likelihood (25) are

also given in Table 1. The maximized likelihood is essentially constant as a function

of á, but has a maximum for r � 0:04.

It is not guaranteed that the trust region maximization procedure will reach a

global maximum. In our experiments we tried other initial values than ø0(á) but this

did not affect the value of the estimates. We also tried larger values of E � 0:05 and

E � 0:10. The value E � 0:05 worked well but the maximization procedure failed to

converge for logá � 5:47 when E � 0:10 was used. Markov chain Monte Carlo

samples of length 8000 were obtained by equispaced subsampling of chains

corresponding to 1:6 million basic updates of the Geyer and MÖller (1994)

algorithm.

In the following we consider inference for è and p taking r to be ®xed at

r0 � 0:04 and setting á equal to á0 � supsë̂b(s). This means that sups p̂á0
(s) � 1.

We do not know if we can rely on asymptotic normality for the parameter estimate

and use instead a semi-parametric bootstrap for inference concerning è. That is, a

number (in this case 99) of independent simulations is generated from the Poisson

model given by ø(á0) and p̂á0
(:). The intensity surface is reestimated for each

simulated Poisson pattern and an estimate of è is obtained with the Newton±Raphson

procedure for r � r0 and á equal to the supremum of the intensity surface estimate

for the simulated point pattern. Figure 4 shows a scatter-plot of the parameters

estimated from the simulations together with the estimate è̂(á0, r0) from the data.

Table 1. Estimates of è and corresponding log likelihoods for various values of á and r. The rightmost

column shows log Há(è̂(á, r), ø0(á)).

sups p̂á(s) log á r è̂1(á, r) è̂2(á, r) log Há

1.00 4.96 0.02 5.08 ÿ0.57 1.61

1.00 4.96 0.03 5.19 ÿ0.41 2.30

1.00 4.96 0.04 5.34 ÿ0.36 3.11

1.00 4.96 0.05 5.27 ÿ0.16 1.09

0.90 5.06 0.02 5.19 ÿ0.54 1.58

0.90 5.06 0.03 5.32 ÿ0.40 2.24

0.90 5.06 0.04 5.49 ÿ0.36 3.11

0.90 5.06 0.05 5.40 ÿ0.16 1.08

0.80 5.18 0.02 5.33 ÿ0.54 1.58

0.80 5.18 0.03 5.46 ÿ0.40 2.21

0.80 5.18 0.04 5.67 ÿ0.36 3.00

0.80 5.18 0.05 5.57 ÿ0.16 1.07

0.70 5.31 0.02 5.49 ÿ0.56 1.58

0.70 5.31 0.03 5.64 ÿ0.39 2.23

0.70 5.31 0.04 5.88 ÿ0.37 3.04

0.70 5.31 0.05 5.77 ÿ0.16 1.02

0.60 5.47 0.02 5.67 ÿ0.56 1.51

0.60 5.47 0.03 5.85 ÿ0.39 2.16

0.60 5.47 0.04 6.18 ÿ0.40 2.92

0.60 5.47 0.05 5.95 ÿ0.15 1.07
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If the estimate è̂2(á0, r0) is used as a test statistic for the hypothesis è2 � 0 against

the hypothesis è2 , 0, a Monte Carlo p-value of 0.10 is obtained. The Monte Carlo

p-values based on the likelihood ratio statistic (25) and the Wald statistic (26) are

0.04 and 0.02, respectively. Note that the Monte Carlo p-values are quite variable

when they are based on just 99 simulations. Goulard et al. (1996) also ®t a

repulsive model to the large Japanese pines, but they do not report on a test for no

interaction.

The right plot in Figure 4 shows Linhom estimated from the data together with

envelopes calculated from simulations of the thinned Strauss process. Compared with

Figure 2, the repulsive interaction seems to improve the ®t, although in both Figures

2 and 4 the estimated Linhom is slightly below the lower envelope for distances around

0:15.

4 Discussion

We conclude this paper by discussing some open problems for the statistical

analysis of inhomogeneous point patterns.

In section 2 we introduced and studied the use of the inhomogeneous K-function.

It is also possible to de®ne analogues to the empty space distribution function and the

nearest-neighbour distribution function. Let for any t > 0 and s 2 R2, r(s, t) > 0 be

determined by

t �
�

B(s,r(s, t))

ë(u) du (27)

Fig. 4. Left: Parameter values estimated from 99 simulations of the ®tted Poisson process. The square

shows the estimate obtained from the data. Right: Linhom estimated from data, and envelopes

calculated from 39 simulations of ®tted thinned Strauss process.
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If ë is strictly positive, then r(s, t) is uniquely determined by (27). Set d(s, Y ) �
inffksÿ yik : yi 2 Yg. Then, for t > 0, the analogue of the empty space

distribution function is

Fs(t) � P(d(s, Y ) < r(s, t))

and the `nearest-neighbour' distribution function is

Gs(t) � Ps(d(s, Y ) < r(s, t))

When Y is a Poisson process, Fs(t) and Gs(t) do not depend on s and are both

equal to exp(ÿt). Under the assumption of a Poisson process these summary

statistics can therefore be estimated and compared with their theoretical values in

order to investigate possible departures from the Poisson model. However, this

requires that we are able to compute the function r(s, t) which may be dif®cult in

practice, and this function depends on a three dimensional argument.

We expect that the Kinhom-function and the semi-parametric approach will prove to

be useful in many cases of applications as it may be dif®cult to model an

inhomogeneous point pattern by a simple parametric model (one exception is the

linear trend found in one of the point patterns analysed in Brix and MÖller, 1998).

Problems with bias depending on the choice of bandwidth may on the other hand

occur due to the non-parametric kernel estimation of the intensity surface. For the

semi-parametric method one advantage compared with the non-parametric approach

based on Kinhom is that it is not required to estimate the intensity surface in points

belonging to the point pattern data. One thereby avoids the additional bias (see (8))

due to possible spatial dependence in the data.

For the large Japanese black pines modelled by a thinned Strauss process (section

3.3) we observed that the maximized likelihood function appeared constant as a

function of ~r(è). One may ask if this is a feature of other exponential family models

as considered in section 2.2.
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